7,077 research outputs found

    Beam-Beam Effects in the SPS Proton-Anti Proton Collider

    Full text link
    During the proton-anti proton collider run several experiments were carried out in order to understand the effect of the beam-beam interaction on backgrounds and lifetimes. In this talk a selection of these experiments will be presented. From these experiments, the importance of relative beam sizes and tune ripple could be demonstrated.Comment: 3 pages, contribution to the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders, CERN, Geneva, Switzerland, 18-22 Mar 201

    Three-dimensional finite element analysis of anterior two-unit cantilever resin-bonded fixed dental prostheses

    Get PDF
    The aim of this study was to evaluate the influence of different framework materials on biomechanical behaviour of anterior two-unit cantilever resin-bonded fixed dental prostheses (RBFDPs). A three-dimensional finite element model of a two-unit cantilever RBFDP replacing amaxillary lateral incisorwas created. Five frameworkmaterialswere evaluated: direct fibre-reinforced composite (FRC-Z250), indirect fibre-reinforced composite (FRC-ES), gold alloy (M), glass ceramic (GC), and zirconia (ZI). Finite element analysis was performed and stress distribution was evaluated. A similar stress pattern, with stress concentrations in the connector area, was observed in RBFDPs for all materials.Maximal principal stress showed a decreasing order: ZI >M>GC> FRC-ES > FRCZ250. The maximum displacement of RBFDPs was higher for FRC-Z250 and FRC-ES than for M, GC, and ZI. FE analysis depicted differences in location of the maximum stress at the luting cement interface between materials. For FRC-Z250 and FRC-ES, the maximum stress was located in the upper part of the proximal area of the retainer, whereas, for M, GC, and ZI, the maximum stress was located at the cervical outline of the retainer. The present study revealed differences in biomechanical behaviour between all RBFDPs.The general observation was that a RBFDP made of FRC provided a more favourable stress distribution

    Accurate determination of elastic parameters for multi-component membranes

    Get PDF
    Heterogeneities in the cell membrane due to coexisting lipid phases have been conjectured to play a major functional role in cell signaling and membrane trafficking. Thereby the material properties of multiphase systems, such as the line tension and the bending moduli, are crucially involved in the kinetics and the asymptotic behavior of phase separation. In this Letter we present a combined analytical and experimental approach to determine the properties of phase-separated vesicle systems. First we develop an analytical model for the vesicle shape of weakly budded biphasic vesicles. Subsequently experimental data on vesicle shape and membrane fluctuations are taken and compared to the model. The combined approach allows for a reproducible and reliable determination of the physical parameters of complex vesicle systems. The parameters obtained set limits for the size and stability of nanodomains in the plasma membrane of living cells.Comment: (*) authors contributed equally, 6 pages, 3 figures, 1 table; added insets to figure

    Using an inverse modelling approach to evaluate the water retention in a simple water harvesting technique

    Get PDF
    In arid and semi-arid zones, runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study, a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (<I>K</I><sub>sat</sub>) independently. The tension infiltrometer measurements proved a good estimator of the <I>K</I><sub>sat</sub> value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between the observed soil water content and the simulated values was as high as <I>R</I><sup>2</sup>=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. The model results indicate that the infiltration trench has a significant effect on soil-water storage, especially at the base of the trench

    Considerations on the Transverse Emittance of the Fixed-Target Beam in the SPS in the PS2 Era

    Get PDF
    The range of the acceptable transverse emittances the Fixed-Target beams delivered to the SPS in the PS2 era is determined based on acceptance and other beam dynamics considerations in the SPS

    3D Trajectories Adopted by Coding and Regulatory DNA Elements: First-Passage Times for Genomic Interactions

    Get PDF
    SummaryDuring B lymphocyte development, immunoglobulin heavy-chain variable (VH), diversity (DH), and joining (JH) segments assemble to generate a diverse antigen receptor repertoire. Here, we have marked the distal VH and DH-JH-Eμ regions with Tet-operator binding sites and traced their 3D trajectories in pro-B cells transduced with a retrovirus encoding Tet-repressor-EGFP. We found that these elements displayed fractional Langevin motion (fLm) due to the viscoelastic hindrance from the surrounding network of proteins and chromatin fibers. Using fractional Langevin dynamics modeling, we found that, with high probability, DHJH elements reach a VH element within minutes. Spatial confinement emerged as the dominant parameter that determined the frequency of such encounters. We propose that the viscoelastic nature of the nuclear environment causes coding elements and regulatory elements to bounce back and forth in a spring-like fashion until specific genomic interactions are established and that spatial confinement of topological domains largely controls first-passage times for genomic interactions

    New Polymer Tensiometers: Measuring Matric Pressures Down to the Wilting Point

    Get PDF
    Tensiometers are commonly used for measuring soil water matric pressures. Unfortunately, the water-filled reservoir of conventional tensiometers limits their applicability to soil water matric pressures above approximately –0.085 MPa. Tensiometers filled with a polymer solution instead of water are able to measure a larger range of soil water matric pressures. We designed and constructed six prototype polymer tensiometers (previously called osmotic tensiometers) consisting of a wide-range pressure transducer with a temperature sensor, a stainless steel casing, and a ceramic plate with a membrane preventing polymer leakage. A polymer chamber (0.1–2.2 cm3) was located between the pressure transducer and the plate. We tested the polymer tensiometers for long-term operation, the effects of temperature, response times, and performance in a repacked sandy loam under laboratory conditions. Several months of continuous operation caused a gradual drop in the osmotic pressure, for which we developed a suitable correction. The osmotic potential of polymer solutions is temperature dependent, and requires calibration before installation. The response times to sudden and gradual changes in ambient temperature were found to be affected by polymer chamber height and polymer type. Practically useful response times (<0.2 d) are feasible, particularly for chambers shorter than 0.20 cm. We demonstrated the ability of the instrument to measure the range of soil water pressures in which plant roots are able to take up water (from 0 to –1.6 MPa), to regain pressure without user interference and to function properly for time periods of up to 1 yr

    Production and characterization of monoclonal antibodies raised against recombinant human granzymes A and B and showing cross reactions with the natural proteins

    Get PDF
    The human serine proteases granzymes A and B are expressed in cytotoplasmic granules of activated cytotoxic T lymphocytes and natural killer cells. Recombinant granzyme A and granzyme B proteins were produced in bacteria, purified and then used to raise specific mouse monoclonal antibodies. Seven monoclonal antibodies (mAb) were raised against granzyme A, which all recognized the same or overlapping epitopes. They reacted specifically in an immunoblot of interleukin-2 (IL-2) stimulated PBMNC with a disulfide-linked homodimer of 43 kDa consisting of 28 kDa subunits. Seven mAb against granzyme B were obtained, which could be divided into two groups, each recognizing a different epitope. On an immunoblot, all mAb reacted with a monomer of 33 kDa protein. By immunohistochemistry, these mAb could be used to detect granzymes A and B expression in activated CTL and NK cells. The availability of these mAb may facilitate studies on the role of human cytotoxic cells in various immune reactions and may contribute to a better understanding of the role of granzmes A and B in the cytotoxic response in vivo
    • …
    corecore